Operational Low/High range Example 30/50:

Customer adjusts CV to preference for low pressure setting (30psi for this example)

Supply Pressure will determine the high limit (50psi)

The Pressure Tanks air pressure set to match CV setting (customer preference)

This is not the operating pressure, this is the lowest acceptable pressure (customer preference). The oper ating pressure will always be higher, unless water supply is interrupted or water supply pressure falls below 30psi.

Available water ~50 gallons - pressure will fluctuate during demand (water flow in the home). Toilet flush, sink taps, dishwasher, clothes washer, Shower... Pressure fluctuation minimal unless there is sustained demand for more than 15 minutes.

See: ** Peak Demand below.

Average Daily Water Usage							
7 Other	66		Outdoo 65 Gallon Per Day	s 55 Gallons	PERSON		
Household Cleaning clothes washer, dishwasher, etc.)	Pel Day	120		
Faucets					GALLONS		
Showers & Baths 14 Toilets				86 866 866	24 HOURS		
0utdors landscaping, pools, leaks, etc.							
WATER USE IT WISELY.	Gallons Used This Month		mber of eople	Days in the Month	Gallons per Person per Day (GPD)		

During an emergency, water use (Demand) should be closely monitored and managed to ensure a long lasting supply of water!

EWS	Emergency Water Storage - in Gallons						
Tanks (2)	Drawdown	Operating	Pressure	Maximum			
Volume	Cycle Valve	adj. / Supp	oly Pressure	Drawdown Gal.			
Gallons	40/60	30/50	60 psi to 2 psi				
~160	~45	~80					
Incl. Air	Gallons Availabe						

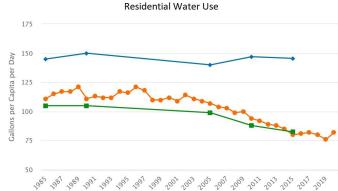
This chart relates to how high you like your Water Pressure in your Home If water supply is consistantly 60 Psi or more there is ~80 Gallons available for emergency use

Less water will be stored while cycling water during non-emergency daily use, refilling tanks, thru the Cycle Valve notch, after each use, during zero flow. No one using water...

Pressure tanks are filled to full water supply pressure slowly thru a notch in the Cycle Valve (CV) seat. (~ 1 GPM)

~80 gal. cap.	EWS System Water Cycled						
Notch = 1 GPM	Time in Minutes / Gallons Cycled						
Flow GPM	1	2	3	4	5		
1	0	0	0	0	0		
2	1	2	3	4	5		
3	2	4	6	8	10		
4	3	6	9	12	15		
5	4	8	12	16	20		
6	5	10	15	20	25		
7	6	12	18	24	30		
8	7	14	21	28	35		

If you are anticipating an emergency situation, turn off Irrigation System! If your Auto Pool Fill is connected to EWS, turn Pool Fill off! If an emergency situation is imminent Isolate household water by


turning off the Isolation Valve (contaminated supply?)

** Peak Demand—during normal daily use, the cycle valve only allows one gallon per minute flow from Water Supply, while cycling the pressure tanks and supplying water Demand as needed. Each time Demand ends the tanks are refilled in ~50 minutes or less, depending on how much water was used (50 gallons @ ~1 gallon per minute). If Demand uses enough water to lower pressure to less than 30psi downstream of the cycle valve, the cycle valve opens and allows full flow from Water Supply, ensuring that water is always available during normal

±±±During water service or supply interruptions the amount of water available is approx. 80 gallons (2 std. tanks) as shown above. 80 gallons is an *estimated* amount of water available due to unknown factors such as supply pressure prior to interruption, demand activity immediately before interruption, tank shape (diameter & height), location elevation (atmospheric pressure) and also amount of remaining water/gallons when operating at less than 20 psi.

Table 1. Typical Indoor Household Water Use

Type of Use	Daily Use (gallons/person)	Approximate % of Total Indoor Use
Toilets	18.5	26.7
Clothes Washers	15.0	21.7
Showers	11.6	16.8
Faucets	10.9	15.7
Leaks	9.5	13.7
Other	1.6	2.2
Baths	1.2	1.7
Dishwashers	1.0	1.4
Total	69.3	100.0

Household/Residential daily water use or GPCD (Gallons Per Capita per Day) varies by location and reporting authority, showing a wide range for daily water use amounts. Allowing for differences of reporting it is necessary to decide how much water is used daily, per person. Keeping the numbers/math manageable, 100 gallons seems reasonable.

Household size of 4,3,2,1 persons would use 400,300,200,100 gallons of water per day. Thus during normal, daily operation, EWS (2 std. tanks) would easily keep up with demand. Only during extended water demand would operating pressure fall below 40 psi (30/50 settings); while continuously cycling/refreshing stored water. Amount of water cycled each day would depend on Demand gpm flow rate minus

1 gpm for the Cycle Valve notch, multiplied by the amount of time flow occurred.

Flow gpm - 1 gpm x Time = Cycled Water

ACCEPTANCE FACTOR CHART

This table incorporates atmospheric pressure (14.7 psi at sea level) USE GAGE PRESSURE. Example: A system operating between a minimum operating pressure of 20 psig (fill pressure) and a maximum operating (usually 10% below the relief valve setting) of 40 psig has an acceptance factor of 0.366. To find the acceptance factor, start at the top of the table and locate the minimum operating pressure. Next, locate the minimum operating pressure on the left index. Where the two lines intersect is the acceptance factor. *maximum

(Use GaugePressure)

MAXIMUM OPERATING				Pf = MI	NIMUM OP	ERATING	PRESSURE	AT TANK	(PSIG)			
PRESSURE PSIG 5	(5)	10	12	15	20	25	30	35	40	45	50	55
10	0.202											
12	0.262	0.075										
15	0.337	0.168	0.101									
20	0.432	0.288	0.231	0.144								
25	0.504	0.378	0.328	0.252	0.126	8 5						
27	0.527	0.408	0.360	0.288	0.168	-						
30	0.560	0.447	0.403	0.336	0.224	0.112						
35	0.604	0.503	0.463	0.403	0.302	0.202	0.101					
40	0.640	0.548	0.512	0.457	0.366	0.274	0.183	0.091				
45	0.670	0.586	0.553	0.503	0.419	0.335	0.251	0.168	0.084	-		
50	0.696	0.618	0.587	0.541	0.464	0.386	0.309	0.232	0.155	0.078		
55	0.717	0.646	0.617	0.574	0.502	0.430	0.359	0.287	0.215	0.144	0.072	
60	0.736	0.669	0.643	0.602	0.536	0.469	0.402	0.335	0.268	0.201	0.134	0.067
65	0.753	0.690	0.665	0.627	0.565	0.502	0.439	0.376	0.314	0.251	0.188	0.125
70	0.767	0.708	0.685	0.649	0.590	0.531	0.472	0.413	0.354	0.295	0.236	0.177

*Remember, there is no adjacent pump or pressure switch when connected to Municipal Water Supply!

Acceptance Factor for 5/50 is .696

Std. Tank Volume is 86 Gallons (per tank)

 $86 \times .696 = 59.856$ Gallons

Tanks can be set-up individually. For differing storage options. For example, 2 tank system 1 tank set 30/50 and one tank set 5/50 or any lesser pressure, see chart above. This would require rotating the tanks by installing a ball valve on each tank to prioritize the 5/50 tank for cycling.

Year	Total Potable GPCD	Residential GPCD*	Population	
2000	165	112	635,073	
2001	165	109	645,780	
2002	170	114	655,834	
2003	166	111	667,287	
2004	163	109	678,418	
2005	161	107	686,540	
2006	159	104	703,157	
2007	157	103	703,157	
2008	148	99	705,271	
2009	146	100	705,316	
2010	139	94	705,817	
2011	136	92	706,118	
2012	131	89	708,863	
2013	127	88	712,698	
2014	124	85	715,260	
2015	117	80	717,875	
2016	117	81	721,205	
2017	122	82	725,461	
2018	116	80	731,236	
2019	111	76	735,610	
2020	119	82	739,485	
2021	116	77	744,528	

Table 2: Annual GPCD (not including reclaimed system deliveries) and estimated Tucson Water service area population from 2000 to 2021. Residential GPCD includes multifamily class water use.

Drawdown							
Model No	Tank Volume	Drawdown (gallons)					
Model No	(gallons)	20/40	30/50	40/60			
HT-2B	2.0	0.73	0.62	0.54			
HT-4B	4.4	1.61	1.36	1.18			
HT-8B	7.4	2.78	2.35	2.03			
НТ-6НВ	5.3	1.94	1.64	1.42			
НТ-14НВ	14.0	5.12	4.33	3.75			
HT-14B	14.0	5.12	4.33	3.75			
HT-20B	20.0	7.31	6.18	5.35			
HT-30B	26.0	8.78	7.42	6.43			
HT-32B	32.0	-	9.89	8.57			
HT-44B	44.0	16.09	13.60	11.78			
HT-62B	62.0	22.67	19.17	16.60			
HT-86B	<u>86.0</u>	31.44	26.58	23.03			
HT-119B	119.0	43.51	36.79	31.86			

Acceptance Factor AF x Tank Volume TV = Drawdown

AFxTV=Drawdown .309 x 86 = 26.574 Two tanks... 2 x 26.66 ≈ 53 Gallons total drawdown